Preview

Bulletin of Ethnic Medicine

Advanced search

The structure of online behavior patterns of adolescents in Kyzyl (Republic of Tyva): age, gender and ethnic differences

https://doi.org/10.62501/2949-5180-2023-1-2-114-125

Abstract

Relevance. The ongoing growth of Internet addiction among adolescents in recent years indicates the scale of this problem and indicates the need to conduct large-scale epidemiological studies to study the prevalence, structural features and prevention of this type of addiction among adolescents.

Goal of research. To study the age-sex and ethnic features of the structure of online behavior patterns among adolescents in Kyzyl (Tuva Republic).

Material and methods. Random samples of adolescents 12-18 years old – students of secondary schools in the city of Kyzyl (Republic of Tyva) in the amount of 216 people were examined. The structure of online behavior patterns was assessed: adaptive (API), maladaptive (NPI) and pathological (PPI) Internet use using the scales of the Chen questionnaire: Com scale (compulsiveness), Wit (withdrawal symptoms), Tol (tolerance), IH (intrapersonal problems and health problems), TM (problems with time management), as well as integral characteristics: KSIZ (key symptoms of Internet addiction) and PSID (problems associated with Internet addiction). Indicators were compared in groups by age (12-14 and 15-18 years), gender (boys, girls) and ethnicity (Russians, Tuvans), using the program “Statistica 12 for Windows” (StatSoft Inc., USA).

Results. According to the results of the study, no age-related differences were identified for all patterns of online behavior. Gender differences in the pattern of maladaptive online behavior in girls included the Wit (withdrawal symptoms), IH (intrapersonal and health problems) and KSIZ (core symptoms of Internet addiction) scales. According to the compulsivity scale (Com), the scale of interpersonal problems and health problems (IH), Tuvan adolescents were distinguished by a higher frequency of pathological Internet use, i.e. presence of Internet addiction.

Conclusion. The study demonstrated the feasibility of using the Chen questionnaire as an informative psychodiagnostic tool for identifying adolescents at risk of developing Internet addictive behavior and individuals with an already formed pattern of pathological Internet use, i.e. Internet addicted teenagers. Adolescents at risk and Internet addicts identified using the CIAS scale of the Chen questionnaire need a set of measures aimed at leveling this type of addiction and preventing associated problems with the somatic and neuropsychic health of the younger generation.

About the Authors

L. S. Evert
Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences; Federal State Budgetary Educational Institution of Higher Education N.F. Katanov Khakass State University
Russian Federation

Lidia S. Evert

3g, Partizana Zheleznyaka Str., Krasnoyarsk 660022

92, Lenin St., Abakan, 655017



Yu. R. Kostyuchenko
Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Yulia R. Kostyuchenko

3g, Partizana Zheleznyaka Str., Krasnoyarsk, 660022



E. S. Panicheva
Federal State Budgetary Educational Institution of Higher Education V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of Ministry of Healthcare of Russian Federation
Russian Federation

Elena S. Panicheva

1, Partizana Zheleznyaka St., Krasnoyarsk, 660022



S. S. Seren-ool
Russian Children’s Clinical Hospital - branch of Pirogov Russian National Research Medical University
Russian Federation

Sayana S. Seren-ool

117, Leninsky Ave., Moscow, 119571



References

1. Bakirov L.R. Psychometric indicators of Internet addiction of studenst - computer users. Neurology Bulletin. 2015;47(2):94-96. doi: 10.17816/nb13956 (In Russian).

2. Voiskunsky A.E. Internet addiction: psychological risk-factors and dynamics of development. Moscow: Acropolis; 2009. (In Russian).

3. Drepa M.I. Internet dependence as an object of scientific reflection in contemporary psychology. Znanie.Ponimanie. Umenie. 2009;2:189-193. (In Russian).

4. Egorov A.Yu., Grechany S.V., Chuprova N.A., Soldatkin V.A., Yakovlev A.N., Ilyuk R.D., Nikolishin A.E., Ponizovsky P.A., Vantey V.B., Gromyko D.I., Dolgikh N.V., Yerofeeva N.A., Pozdnyak V.V., Ilyichev A.B., Khutoryanskaya Yu.V., Egorov A.A., Magomedova E.A., Nechaeva A.I., Pashkevich N.V., Semenova Yu.V., Sidorov A.A., Khanykov V.V., Kibitov A.A., Krupitsky E.M., Shmukler A.B., Kibitov A.O. Clinical and psychopathological features of persons with Internet addiction: experience of a pilot study. S.S. Korsakov Journal of Neurology and Psychiatry/Zhurnal Nevrologii I Psikhiatrii imeni S.S. Korsakova. 2020;120(3):13-19. doi: 10.17116/jnevro202012003113 (In Russian).

5. Egorov A.Yu. Modern views on Internet addiction and approaches to its correction. Medicinskaâ psihologiâ v Rossii. 2015;4(33):4. URL: http://mprj.ru (Accessed: 09.18.2023). (In Russian).

6. Zhilinskaya A.V. Internet as a resource for solving the problems of adolescence: a review of psychological research Jelektronnyj resurs «Psihologicheskaja nauka i obrazovanie psyedu.ru», E-journal «Psychological Science and Education psyedu. ru», 2014;6(1). Available at: http://psyedu.ru/journal/2014/1/Jilinskaya.phtml (Accessed 18.09.2023). (In Russian).

7. Malygin V.L., Khomeriki N.S., Antonenko A.A. Individually-psychological qualities of adolescents as risk-factors for development of internet-addictive behaviour. Med. psihol. Ross. 2015;1(30):7. URL: http://mprj.ru (Accessed: 18.09.2023). (In Russian).

8. Malygina M.A. On the causes of online computer addiction. – 2nd ed. Moscow: Avant;2011. (In Russian).

9. Rozanov V.A. Evolution of children and adolescents mental health for the last decades an attempt of objective evaluation based on different approaches. Social and Clinical Psychiatry. 2018;28(1):62-73. (In Russian).

10. Skvortsova E.S., Postnikova L.K. The prevalence and structure of Internet use among adolescent students. Journal of addiction problems/Voprosy Narkologii. 2015;4:29-40. (In Russian).

11. Soldatova G.U., Rasskazova E.I. Excessive use of the Internet: sighs and factors. Psychological Journal/Psikhologicheskii Zhurnal. 2013;4(34):79-88. (In Russian).

12. Trusova A.V., Grechanyi S.V., Soldatkin V.A., Yakovlev A.N., Ilyuk R.D., Chuprova N.A., Nikolishin A.E., Ponizovskiy P.A., Kibitov A.A., Vantej V.B., Gromyko D.I., Dolgih N.N., Erofeeva N.A., Ilichev A.B., Magomedova E.A., Nechaeva A.I., Pashkevich N.V., Pozdnyak V.V., Semenova Y.S., Sidorov A.A., Khanykov V.V., Khutoryanskaya J.V., Krupitsky E.M., Shmukler A.B., Egorov A.Yu., Kibitov A.O. Internet Addiction Predictors: Analysis of Psichological Factors. V.M. Bekhterev Review of Psychiatry and Medical Psychology. 2020;1:72-82. (In Russian).

13. Shutova N.V., Baranova Yu.M. Risk Assessment of Internet Addiction for the Mental Health of Adolescents. Hygiene and Sanitation, Russian Journal. 2017;6:568-572. (In Russian).

14. Chen S-H., Weng L-G., Su Yi-J., Wu H-M., Yang P-F. Development of Chinese Internet addiction scale and its psychometric study. Chinese Journal of Psychology. 2003;45(3):279-294. doi: 10.1037/t44491-000.

15. Chi X., Lin L., Zhang P. Internet Addiction Among College Students in China: Prevalence and Psychosocial Correlates. Cyberpsychol. Behav. Soc. Netw. 2016;19(9):567-73. doi: 10.1089/cyber.2016.0234.

16. Ching S.M., Hamidin A., Vasudevan R., Sazlyna M.S., Wan Aliaa W.S., Foo Y.L., Yee A., Hoo F.K. Prevalence and factors associated with internet addiction among medical students - A cross-sectional study in Malaysia. Med. J. Malaysia. 2017;72(1):7-11 doi: www.e-mjm.org/2017/v72nl/intemetaddiction.

17. Doh Y.Y., Kim B., Lee S., Gweon G. The Cyclic Value-Context Reinforcement Model of Problematic Internet Use: Empirical Validation Using a Thematic Analysis of Children’s Counseling Data. J. Med. Internet Res. 2020;22(7):e17996. doi: 10.2196/17996.

18. Durkee T., Kaess M., Carli V., Parzer P., Wasserman C., Floderus B., Apter A., Balazs J., Barzilay S., Bobes J., Brunner R., Corcoran P., Cosman D., Cotter P., Despalins R., Graber N., Guillemin F., Haring C., Kahn J.P., Mandelli L., Marusic D., Mészáros G., Musa G.J., Postuvan V., Resch F., Saiz P.A., Sisask M., Varnik A., Sarchiapone M., Hoven C.W., Wasserman D. Prevalence of pathological internet use among adolescents in Europe: demographic and social factors. Addiction. 2012;107(12):2210-22. doi: 10.1111/j.1360-0443.2012.03946.x.

19. Durkee T., Carli V., Floderus B., Wasserman C., Sarchiapone M., Apter A., Balazs J.A., Bobes J., Brunner R., Corcoran P., Cosman D., Haring C., Hoven C.W., Kaess M., Kahn J.P., Nemes B., Postuvan V., Saiz P.A., Värnik P., Wasserman D. Pathological Internet Use and Risk-Behaviors among European Adolescents. Int. J. Environ. Res. Public Health. 2016;13(3):294. doi: 10.3390/ijerph13030294.

20. Heinze K., Lin A., Reniers R.LEP, Wood S.J. Longer-term increased cortisol levels in young people with mental health problems. Psychiatry Res. 2016;236:98-104. doi: 10.1016/j.psychres.2015.12.025.

21. Kaess M., Parzer P., Mehl L., Weil L., Strittmatter E., Resch F., Koenig J. Stress vulnerability in male youth with Internet Gaming Disorder. Psychoneuroendocrinology. 2017;77:244-251. doi: 10.1016/j.psyneuen.2017.01.008.

22. Karacic S., Oreskovic S. Internet Addiction Through the Phase of Adolescence: A Questionnaire Study. JMIR Mental Health. 2017;4(2):e11. doi: 10.2196/mental.5537.

23. Mak K.K., Lai C.M., Ko C.H., Chou C., Kim D.I., Watanabe H., Ho R.C. Psychometric properties of the Revised Chen Internet Addiction Scale (CIAS-R) in Chinese adolescents. J. Abnorm. Child Psychol. 2014;42(7):1237-45. doi: 10.1007/s10802-014-9851-3.

24. Reiner I., Tibubos A.N., Hardt J., Müller K., Wölfling K., Beutel M.E. Peer attachment, specific patterns of internet use and problematic internet use in male and female adolescents. Eur .Child Adolesc. Psychiatry. 2017;26(10):1257-1268. doi: 10.1007/s00787-017-0984-0.

25. Saunders J.B., Hao W., Long J., King D.L., Mann K., Fauth-Bühler M., Rumpf H.J., Bowden-Jones H., Rahimi-Movaghar A., Chung T., Chan E., Bahar N., Achab S., Lee H.K., Potenza M., Petry N., Spritzer D., Ambekar A., Derevensky J., Griffiths M.D., Pontes H.M., Kuss D., Higuchi S., Mihara S., Assangangkornchai S., Sharma M., Kashef A.E., Ip P., Farrell M., Scafato E., Carragher N., Poznyak V. Gaming disorder: Its delineation as an important condition for diagnosis, management, and prevention. J. Behav. Addict. 2017;6(3):271-279. doi: 10.1556/2006.6.2017.039.

26. Stavropoulos V., Alexandraki K., Motti-Stefanidi F. Recognizing internet addiction: prevalence and relationship to academic achievement in adolescents enrolled in urban and rural Greek high schools. J. Adolesc. 2013;36(3):565-576. doi: 10.1016/j.adolescence.2013.03.008.

27. Tereshchenko S., Kasparov E. Neurobiological Risk Factors for the Development of Internet Addiction in Adolescents. Behav. Sci (Basel). 2019;9(6):62. doi: 10.3390/bs9060062.

28. Tran B.X., Huong L.T., Hinh N.D., Nguyen L.H., Le B.N., Nong V.M., Thuc V.T., Tho T.D., Latkin C., Zhang M.W., Ho R.C. A study on the influence of internet addiction and online interpersonal influences on health-related quality of life in young Vietnamese. BMC Public Health. 2017;17(1):138. doi: 10.1186/s12889-016-3983-z.

29. Tsitsika A.K., Tzavela E.C., Janikian M., Ólafsson K., Iordache A., Schoenmakers T.M., Tzavara C., Richardson C. Online social networking in adolescence: patterns of use in six European countries and links with psychosocial functioning. J. Adolesc. Health. 2014;55(1):141-7. doi: 10.1016/j.jadohealth.2013.11.010.

30. Vaccaro A.G., Potenza M.N. Diagnostic and Classification Considerations Regarding Gaming Disorder: Neurocognitive and Neurobiological Features. Front. Psychiatry. 2019;10:405-415. doi: 10.3389/fpsyt.2019.00405.

31. Wang C.W., Chan C.H., Ho R.T., Chan J.S., Ng S.M., Chan C.L. Managing stress and anxiety through qigong exercise in healthy adults: a systematic review and meta-analysis of randomized controlled trials. BMC Complement Altern. Med. 2014;14:8. doi: 10.1186/1472-6882-14-8.

32. Willoughby T. A short-term longitudinal study of Internet and computer game use by adolescent boys and girls: prevalence, frequency of use, and psychosocial predictors. Dev. Psychol. 2008;44(1):195-204. doi: 10.1037/0012-1649.44.1.195.

33. Wu X.S., Zhang Z.H., Zhao F., Wang W.J., Li Y.F., Bi L., Qian Z.Z., Lu S.S., Feng F., Hu C.Y., Gong F.F., Sun Y.H. Prevalence of Internet addiction and its association with social support and other related factors among adolescents in China. J. Adolesc. 2016;52:103-11. doi: 10.1016/j.adolescence.2016.07.012.


Review

For citations:


Evert L.S., Kostyuchenko Yu.R., Panicheva E.S., Seren-ool S.S. The structure of online behavior patterns of adolescents in Kyzyl (Republic of Tyva): age, gender and ethnic differences. Bulletin of Ethnic Medicine. 2023;(1-2):114-125. (In Russ.) https://doi.org/10.62501/2949-5180-2023-1-2-114-125

Views: 22


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5180 (Print)